Occupational Cancer
EU-OSHA perspective and activities

Elke Schneider
Prevention and Research Unit
European Agency for Safety and Health at Work
A new look at old diseases
EU-OSHA work

- **Reports:**
 - Policy and practice skin diseases
 - Chapters in “emerging chemical risk” and emerging biological risks” reports
 - OSH in figures MSDs
 - OSH in figures Noise and hearing loss
 - Occupational burden of disease draft report

- Mainstreamed into work on groups, sectors, risk factors

- 2002-2012 Participation in working groups Eurostat

- 2011 Participation in WS on occupational diseases (DG EMPL report), 2013 conference on ODs

- No consistent approach to the topic

- OSH monitoring Workshop 2002 (Forum 11): EU-OSHA asked to contribute to the policy discussion on work-related diseases
A new look at old diseases

- **Building on Agency’s work**
 - MSDs, skin diseases, stress-related disorders

- **Risks to reproductive health**
 - Workshop and publication of a report
 - Lack of testing routines, monitoring and epidemiologic studies on some reprotoxic effects (male reprotoxicity; on the offspring e.g. propensity to allergies, hormonal and developmental changes), caused by chemicals, physical and organisational factors
 - prolonged sitting, lack of access to rest and toilet facilities
 - Only few countries have strategies beyond the protection of pregnant workers
 - Support workplace management and awareness-raising
 - Publication of workshop summary

- **Carcinogens and work-related cancer:**
 - Report + summary to follow-up on 2012 seminar and address gaps identified
 - incl. monitoring methods, campaigning for awareness and prevention, identification of vulnerable groups and back to work strategies for workers affected by cancer

- **Workshop to scope future work on burden of WRD: 2014**
 - with experts, EC, FOPS, social partners, SCOEL
Work-related cancer – EU-OSHA activities

- Member States survey and report on OELs for CMRs (published 2009)
- Seminar with DG Employment, ECHA, Member State reps nominated by FOP, ACSH WP Chemicals, SLIC Chemex, SCOEL (Summary published in 2012)

Gaps identified in:

- **Research**: Cover more groups, long-term population studies
 - Current data/recognised diseases only cover industry but not services
 - Vulnerable workers (e.g. young, migrant female, in maintenance)
 - Work organisational factors (e.g. shift work and breast cancer)
 - Lifestyle factors often influenced by the way work is organised (e.g. static work, access to healthy food, culture/norms of the sector)

- **Monitoring**: approach occupation → health effect, use multiple data sources, e.g. job/exposure matrices, link to employment trends

- **Workplace solutions**: collect case studies of successful prevention, examples of company policies, successful interventions by preventive services and labour inspections

- **Policy level**: need for back-to-work strategies for workers affected by cancers (currently hardly any in place)

- **2013-2014**: State-of-the report to address the gaps identified above, focusing on existing exposure and disease assessment & examples of national policies
Work-related cancer Seminar September 2012

- **Monitoring:**
 - Take different approach (occupation → disease rather than agent → disease)
 - Use job-exposure matrices
 - Use cancer registers and other sources of data

- **Rethink concept of vulnerable workers:**
 - Young workers (e.g. in maintenance)
 - Migrant workers in low-skilled manual jobs – lack of training and access to preventive services
 - Women in service professions
 - Older workers

- **Rethink major causes and how to assess the burden of disease:**
 - NOCCA study looked at socio-economic determinants and occupations via cancer incidence
 - Examples: cancer of the digestive system linked to static work, “cultural norms of the occupation” and access to healthy food
 - Combined exposures to several factors
 - Shift work and cancer

Occupational exposure limits for CMR substances

A summary

An overview table of the 217 limit values, of which 63 for reprotoxicants
A compilation of all the national questionnaires received

It includes:

A table of limit values for reprotoxic substances (63 substances)
Links to documents available on the Internet
Some info on biological limit values

http://osha.europa.eu
Work-related cancer
A review of assessment methods

- Current data/recognised diseases cover industry, but not services (70% of workers work in services)
- Vulnerable workers (e.g. young, migrant female, in maintenance)
- Work organisational factors (e.g. shift work and breast cancer)
- Lifestyle factors often influenced by the way work is organised (e.g. static work, access to healthy food, culture/norms of the sector)
- Hardly any back to work strategies

Conclusions :
- **Research**: Cover more groups, long-term population studies
- **Monitoring**: approach occupation → health effect, use multiple data sources, e.g. job/exposure matrices, link to employment trends
- **Workplace solutions**: collect case studies of successful prevention, examples of company policies, successful interventions by preventive services and labour inspections
- **Awareness raising**

Silica still a very relevant factor in Europe

- **Exposures to:**
 - Construction workers
 - Ceramics and pottery
 - Glass workers
 - Mining
 - Iron and steel workers, foundries
 - Sandblasting (recently for „used-jeans look“)
 - Artificial stone
 - Waste management

- About 1-2% of workers exposed
- Multi-exposures need to be considered
- Some indications that exposures to temporary and maintenance workers, as well as female and young workers may not be assessed
- Some methodologies allow for exposure level assessment and retrospective exposure assessment
Silica one of the agents covered in the CAREX study

Most common agents covered by CAREX to which workers were exposed (numbers of exposed workers) in 15 Member States of the European Union in 1990–3

Source: Kauppinen et al. 2000

http://osha.europa.eu
FINJEM trend study – exposure to silica

Occupational inhalation exposure to crystalline silica (quartz dust) in Finland in 1950, 1970, 1990 and 2008 and predicted for 2020, as measured by four different metrics of exposure. Proportional values as compared with 1950 (baseline = 100).

Overall, exposures show a steady downward trend as compared to 1950, although more people were exposed to silica.

Source: FINJEM database (FIOH, 2013)
ExpoSYN – example of a measurement database

- ExpoSYN is a measurement database
- Data from 18 European countries and Canada on five lung carcinogens.
- In 2012, it included 356,551 measurement results.
 - respirable crystalline silica (42%),
 - asbestos (20%),
 - chromium (16%),
 - nickel (15%) and
 - PAHs (7%).
- The measurements cover a long period, from 1951 to present, but only a small portion of them (1%) were performed before 1975.
- To be used to build a job–exposure matrix (JEM) for a large pooled analysis of epidemiological case–control studies on lung cancer (SYNERGY study)
- The criteria for selecting asbestos, PAHs, nickel, chromium and respirable crystalline silica as the exposures of interest were:
 - classification in IARC group 1 (carcinogenic to humans);
 - prevalence of joint exposure in study populations;
 - availability of quantitative exposure data;
 - possibility to disentangle the effects of correlated occupational exposures;
 - possibility to disentangle occupational exposures from exposures in general population;
 - mechanistic considerations (shared or different modes of biological action);
 - relevance for prevention;
 - relevance for compensation
EU-OSHA Cancer seminar Sep. 2012
Prospective study
UK burden of disease data (Rushton, L.)

Carcinogens where occupational standards/limits exist or could be introduced

- **Example: silica**
 - Study looked at five prevention options and assessed the potential effects:
 - Reduce exposure limit from 0.1 to 0.05 mg/m3 in all workplaces, in 2010, with the same proportion exposed above the new limit as above the old
 - Reduce exposure limit again to 0.025 mg/m3
 - Improve compliance from 33% to 90% in all workplaces
 - Try doing both for all workplaces
 - Successively enforce the new limit and improve compliance in workplaces of different sizes
EU-OSHA Cancer seminar Sep. 2012
UK burden of disease data (Rushton, L.)
Lung cancer from exposure to RCS
Effect of reducing the exposure standard for RCS versus compliance

A) Attributable registrations

<table>
<thead>
<tr>
<th>Forecast Year</th>
<th>Attributable Registrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>800</td>
</tr>
<tr>
<td>2020</td>
<td>800</td>
</tr>
<tr>
<td>2030</td>
<td>800</td>
</tr>
<tr>
<td>2040</td>
<td>800</td>
</tr>
<tr>
<td>2050</td>
<td>800</td>
</tr>
<tr>
<td>2060</td>
<td>800</td>
</tr>
<tr>
<td>2070</td>
<td>800</td>
</tr>
<tr>
<td>2080</td>
<td>800</td>
</tr>
</tbody>
</table>

- (1) Baseline: exposure limit 0.1mg/m³ maintained, compliance 33%
- (2) Exposure limit 0.05mg/m³ from 2010, compliance 33%
- (10) Exposure limit 0.025mg/m³ from 2010, compliance 33%
- (11) Exposure limit 0.1mg/m³ maintained, compliance 90%
- (12) Exposure limit 0.05mg/m³ from 2010, compliance 90%
- (13) Exposure limit 0.025mg/m³ from 2010, compliance 90%

B) AFs

<table>
<thead>
<tr>
<th>Forecast Year</th>
<th>Attributable Fraction, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>3.0</td>
</tr>
<tr>
<td>2020</td>
<td>2.5</td>
</tr>
<tr>
<td>2030</td>
<td>2.0</td>
</tr>
<tr>
<td>2040</td>
<td>1.5</td>
</tr>
<tr>
<td>2050</td>
<td>1.0</td>
</tr>
<tr>
<td>2060</td>
<td>0.5</td>
</tr>
<tr>
<td>2070</td>
<td>0.0</td>
</tr>
<tr>
<td>2080</td>
<td>0.0</td>
</tr>
</tbody>
</table>

- (1) Baseline: exposure limit 0.1mg/m³ maintained, compliance 33%
- (2) Exposure limit 0.05mg/m³ from 2010, compliance 33%
- (10) Exposure limit 0.025mg/m³ from 2010, compliance 33%
- (11) Exposure limit 0.1mg/m³ maintained, compliance 90%
- (12) Exposure limit 0.05mg/m³ from 2010, compliance 90%
- (13) Exposure limit 0.025mg/m³ from 2010, compliance 90%

Selected conclusions from the study on exposure assessment methodologies

<table>
<thead>
<tr>
<th>Issue</th>
<th>Recommendations</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica dust and diesel engine exhaust, welding fumes, ETS, wood dust and endotoxins are not yet covered by registers, mainly because of wide use range Will not be addressed by REACH</td>
<td>Assess exposure, broaden the scope of assessment systems to cover these substances adequately Develop prevention measures, incl. in new professions</td>
<td>Young workers in maintenance and women, for example in delivery, retail and transport, are insufficiently covered by data; ensure their exposures are also investigated</td>
</tr>
<tr>
<td>Data reflect exposures from the past, not apt for estimating present exposure and future trends</td>
<td>Improving contextual data of exposure measurement databases via international cooperation would facilitate better use of exposure data in data estimations. Prospective studies with trend information (exposure over time) and information on exposure patterns in different occupations and tasks</td>
<td>Build on examples such as the SYNERGY study, which focuses on silica exposures Build on examples from Member States, such as the prospective studies from the United Kingdom on silica exposure Retrospective exposure assessment combining interviews with data from social security and employment registers</td>
</tr>
</tbody>
</table>