

A pragmatic risk assessment tool for assessing risks related to carcinogens

Josje Arts – Nouryon (former AkzoNobel Chemicals)

Introduction

Nouryon

- Nouryon (former AkzoNobel Chemicals) produces a whole array of specialty chemicals
- This global company has ~10,000 employees and 90 production units worldwide
- Carcinogens are occasionally used in production processes (e.g. formaldehyde is used to produce certain chelating agents (non-classified))
- As a sustainable company we try to protect our workforce, consumers and the environment (<u>Priority Substances Program</u> – phase out or restricted use of chemicals; since 2011)
- As an (inhalation) toxicologist I am dedicated to assess risks of chemical exposure

Hazard x Exposure = Risk

Hazard assessment : 1. Classification

2. OEL

EU-CLP Regulation:

- Acute toxicity: cat. 1, 2, 3, 4

- Irritation: cat. 1, 2A, 2B

- Sensitization: cat. 1A, 1B

- STOT SE/RE: cat. 1, 2

All based on: **POTENCY**

EU-CLP Regulation:

- CMR: cat 1A, 1B, 2

Based on: EVIDENCE

Cat. 1A: evidence in humans

Cat. 1B: strong evidence in animals

Cat. 2: limited evidence in animals

Mixtures

Cat .1A: 0.1%

Cat. 1B: 0.1%

Cat. 2: 1%

Thus: **not based on POTENCY**

Carcinogenic substances in NL

- Official list of carcinogenic substances and processes
- Based on:
 - Annex VI (cat. 1A and 1B)
 - and as concluded by the Dutch Health Council (e.g. ethanol)

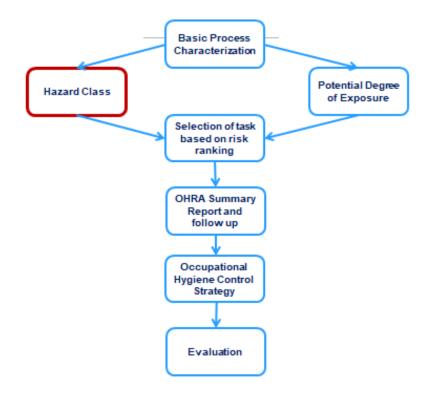
Examples:

Other countries (mainly):

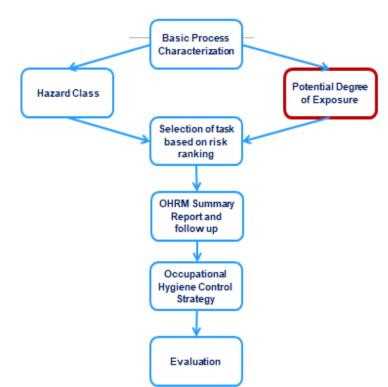
- Ethanol OEL: 260 mg/m3 (130 ppm) 500-1000 ppm

- Formaldehyde OEL: 0.15 mg/m3 (0.12 ppm) 0.3-0.5 ppm

Factor ~1000 difference in potency


Occupational Hygiene Risk Management (OHRM)Tool

- Started in 2011 at that time, many substances were not REACH registered yet
- However, Dutch Labor Inspectorate wanted to have information on:
- 1. An inventory of <u>all</u> chemicals in the workplace, including their hazards
- 2. Evaluation of the risks
- 3. Appropriate measures to control the risks
- 4. How to safeguard the entire system
- OHRM tool accepted as good practice by the <u>Dutch Labor Inspectorate</u>


OHRM: Hazard class (HC); assigned by toxicologist

OHRM: Potential Degree of Exposure (PDE); assessed by technicians

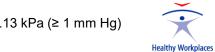
Six determinants for inhalation exposure:

- Material Characteristics [MC]
- Manual Interaction [MI]
- Quantity Handled [QH]
- Aerosol Dispersion [AD]
- Duration of Task [DT]
- Degree of Dilution [DD]

OHRM: Risk Ranking Table

Hazard class (HC) – based on COSHH essentials (UK-HSE)

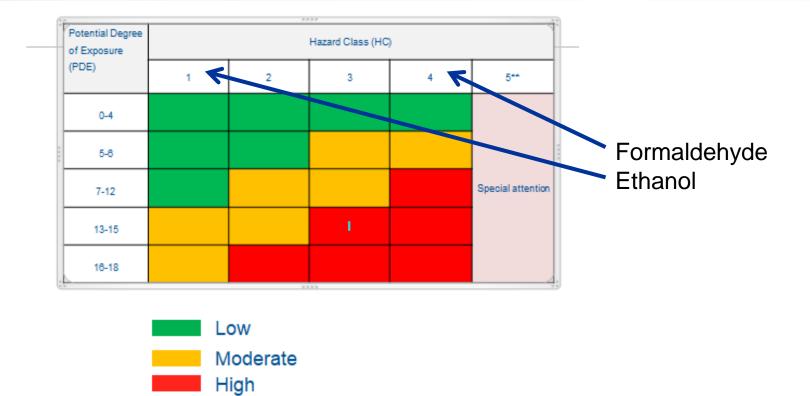
НС	Hazard Statements	Remarks
1	All others not otherwise listed	
2	302, 304, 312, 315, 319, 332, 335, 336, 361, 373	H335 – moderately irritating H373 – sign. effects at 10-100 mg/kg bw H361 – sign. effects > 30 mg/kg bw
3	301, 311, 314, 317, 318, 331, 335, 360, 371, 372	H317 – moderate skin sensitizer H335 – strongly irritating H372 – sign. effects at 1-10 mg/kg bw H360 – sign. effects at 3-30 mg/kg bw
4	300, 310, 317, 330, 34 (, <u>351</u> , 860, 362, 370, 372	H317 – strong skin sensitizer H372 – sign. effects at 0.1-1 mg/kg bw H360 – sign. effects at 0.3-3 mg/kg bw
5	334, 34 0 , <u>350</u>	In case of CM ask for expert advice to set exposure level



Hazard class (HC) – OHRM

НС	Hazard Statements	Remarks	OEB (dust, no or slightly volatile) [mg/m3]	OEB (medium / high volatile) [ppm]
1	All others not otherwise listed		>1	>50
2	302, 304, 312, 315, 319, 332, 335, 336, 361, 373	H335 – moderately irritating H373 – sign. effects at 10-100 mg/kg bw H361 – sign. effects > 30 mg/kg bw	>0.1-1	>5-50
3	301, 311, 314, 317, 318, 331, 335, 360, 371, 372	H317 – moderate skin sensitizer H335 – strongly irritating H372 – sign. effects at 1-10 mg/kg bw H360 – sign. effects at 3-30 30 mg/kg bw	>0.01-0.1	>0.5-5
4	300, 310, 317, 330, 341, <u>351,</u> 360, 362, 370, 372	H317 – strong skin sensitizer H372 – sign. effects at 0:1-1 mg/kg bw H360 – sign. effects at 0:3-3 mg/kg bw	>0.001-0.01	>0.05-0.5
5	334, 340, <u>350</u>	In case of CM ask for expert advice to set exposure level	≤0.001	≤0.05

11


Hazard class (HC) – OHRM

НС	OEB (dust, no or slightly volatile) [mg/m3]	OEB (medium / high volatile) [ppm]	
1	>1	>50	
2	>0.1-1	>5-50	Ethanol (130 ppm) Formaldehyde (0.12
3	>0.01-0.1	>0.5-5	
4	>0.001-0.01	>0.05-0.5	
5	≤0.001	≤0.05	

OHRM: Risk Ranking Table

Conclusions / remarks

- Carcinogenic substances differ in potency; this also holds for genotoxic substances
- In case of genotoxic carcinogens, a DMEL approach is used to assess hazard class
- Exposure concentrations should be as low as possible
- To assess the real risk, a risk-based approach should be used not only looking at hazard
- We use the OHRM tool within Nouryon globally

Thanks for your attention

